43rd IEEE Conference on Decision and Control

December 14-17, 2004
Atlantis, Paradise Island, Bahamas

State-Space Search for Improved

Autonomous UAVs Assignment Algorithm

S. J. Rasmussen,

T. Shima, J. W. Mitchell, A. G. Sparks,

P. Chandler

ThA05.4

Air Vehicles Directorate, Air Force Research Laboratory, Wright-Patterson AFB

Abstract— This paper describes an algorithm that generates
vehicle task assignments for autonomous uninhabited air
vehicles in cooperative missions. The algorithm uses a state-
space best-first search of a tree that incorporates all of the
constraints of the assignment problem. Using this algorithm a
feasible solution is generated immediately, that monotonically
improves and eventually converges to the optimal solution.
Using Monte Carlo simulations the performance of the search
algorithm is analyzed and compared to the desirable assign-
ment algorithm attributes. It is shown that the proposed
deterministic search method can be implemented for given
run times, providing good feasible solutions.

I. INTRODUCTION

Advances in technology have made it possible to field
autonomous uninhabited air vehicles (UAVs) that can be
deployed in teams to accomplish important missions such as
suppression of enemy air defenses and combat intelligence
surveillance and reconnaissance. While it is technically
possible to field these types of vehicles, work is needed to
develop implementable strategies/algorithms to allow UAVs
to cooperate with each other in order to perform these types
of missions. Major portions of proposed missions can be
preplanned, but due to limited information about enemy
positions and assets in the battlefield area, the UAVs will
have to react to changes in perceived enemy state during
execution of the mission plan. Cooperating, the UAV team
will be able to optimize the use of their combined resources
to accomplish the goals of their mission. If the UAVs are
unable to cooperate with each other in online planning
and execution of the mission, then either group autonomy
will be traded for high levels of manned intervention or
more vehicles/resources will be required to perform the
mission. While cooperation of this kind is desirable, it
can be very complicated to implement. To perform these
missions, acceptable algorithms must be solved with given
time constraints and be robust to uncertainties arising from
elements such as sensors, communication, and plan execu-
tion.
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Many different candidate cooperative control algorithms
have been developed, implemented, and simulated [1]-[6];
but, due to the complexity of this problem, all of these
algorithms have been heuristic in nature. Many of these
algorithms also do not meet all of the requirements of
the assignment problem, i.e. assignment coordination, task
precedence, and flyable trajectories. In order to judge the
effectiveness of these algorithms a tree generation algorithm
was developed [7] that produces optimal solutions to the
assignment problem based on piecewise optimal trajecto-
ries. This algorithm generates a tree of feasible assignments
and then by exhaustive search finds the optimal assignment.
During generation of the tree all of the requirements of the
mission are met, but since enumeration of all of the feasible
assignments is needed, direct use of this approach is only
reasonable for relatively low dimensional scenarios and off-
line applications.

In this work a dynamic state-space search algorithm is
proposed that has many desirable qualities such as providing
a fast feasible solution that monotonically improves and,
eventually, converges to the optimal solution. Using the
tree to represent the decision state-space makes it possible
to incorporate many different types of constraints into the
solution of the problem. Since the state-space is traversed
dynamically, i.e. only the states discovered in the search are
instantiated, the algorithm can efficiently find feasible solu-
tions. Given enough time the essentially branch and bound
search algorithm will converge to the optimal assignment
without a complete enumeration of all of the states.

The remainder of this manuscript is organized as follows:
In the next section, the UAV task assignment problem is
reviewed. This is followed by a description of the state space
best first search algorithm for the studied problem. A Monte
Carlo simulation study is then presented and concluding
remarks are offered in the last section.

II. ASSIGNMENT PROBLEM

Since UAV teams and missions that require cooperative
decision and control can be varied with many different
requirements and capabilities, a generic assignment problem
is defined. Let

T:{laza"'aNt} (1)

be the set of targets and let
V={12,...,N,} )

be a set of UAVs performing tasks on these targets. In this
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tasks to prosecute each target, i.e. classify, attack, and verify
kill of the targets, while maintaining forward air speed. Thus
the set of missions is

M = {Classify, Attack,Verify} 3)

This type of assignment problem is termed bounded speed
task assignment problem (BSTAP).

A. Assignment Requirements

Each of the tasks has requirements governing its exe-
cution. Target classification is required to ensure that the
subject object is the intended target and not a decoy or some
other non-target. To complete a classification task a vehicle
must follow a trajectory that places its sensor footprint on
the target at a selected heading angle with respect to the
target. After a target has been successfully classified one
or more UAVs attack it with restrictions on their trajectory.
Then the UAV team must verify that the target was killed
using their onboard sensors with given footprints.

The tasks for each target must be accomplished in order,
i.e. the target must be classified before it can be attacked and
attacked before it can be verified. Thus, any algorithm that
produces cooperative assignments must enforce precedence
of the tasks. In order to utilize the UAVs in an efficient
manner, each task must be accomplished once, i.e. UAVs
are not allowed to attack a target twice, unless the target is
verified alive after an attack or there is a predefined need for
multiple attacks. This means that task coordination must be
enforced in any optimal solution to this assignment problem.
In order to guarantee that the task precedence requirements
are met, the assigned trajectories must be flyable, e.g. a
fixed-wing UAV has a minimum turning radius. If the
trajectories assigned to a UAV are not flyable, the timing
and geographical coordination of the cooperative mission
may be invalidated. The scale of the scenario is important in
determining the impact of the flyable trajectories constraint,
e.g. if the turn radius of the vehicle is very small when
compared to the distance between the targets, then this
constraint may not have a negative impact on the mission.

Based on the analysis above, any optimal cooperative
control algorithm for solving the BSTAP must comply with
the following constraints:

(i) Task Coordination - Vehicle task assignments
must be coordinated to ensure that every task £ €
M is completed exactly once on each target j € T'.
(i) Task Precedence - The Tasks performed on
each target must be in the following order: classify,
attack and verify.

(iii) Flyable Trajectories - The UAVs must be
assigned trajectories that they can follow.

B. Combinatorial Optimization Problem

Even for relatively low numbers of vehicles and targets
the BSTAP is a very large combinatorial problem. Table I
shows the number of nodes in the decision space for various
vehicle/target engagements that require three tasks. Because

[ Targets/Vehicles | 2 [ 3 [ 4 ]

2 2,229 2,0833 106,569
3 1,465,507 | 46,816,228 | 570,031,453
TABLE I

TOTAL NUMBER OF NODES IN THE DECISION STATE-SPACE.

of the size of the problem and the need to implement these
algorithms on-line, desirable qualities of candidate coop-
erative decision and control algorithms are: fast feasible
solutions, improved solution over time, and incorporation
of vehicle dynamics constraints.

BSTAP analyzed in this paper, the performance metric is
defined as the cumulative distance travelled by the vehicles
to perform all of the required tasks

N,
J=>r 4)
=1

where r; is the distance travelled by UAV i € V until
finishing his part in the group task plan. At that point in time
the UAV has no more group tasks to fulfill and can resume
a default task, e.g. searching for new targets. The group
objective is to minimize Eq. 4 subject to the constraints
(1)-(iii).

An optimal solution to the BSTAP, complying with all
of the constraints, can be obtained using the mixed integer
linear programming (MILP) method. However, for most
significant problems, this algorithm can take a long time to
set up and to execute. Heuristics, such as using Euclidean
distances instead of the restriction of flyable trajectories,
have been proposed to speed up the MILP algorithm on the
expense of optimality [8], [9]. Incorporating the restriction
of flyable trajectories but allowing the trajectory to be
piece-wise optimal, a tree generation algorithm has been
recently developed [7]. While this algorithm is easy to
set up, for most significant problems it also takes a long
time to exausively search for the optimal solution. In the
next section a best first search algorithm for such a tree is
proposed allowing fast feasible solutions that monotonically
converge, eventually, to the piece-wise optimal solution.

III. STATE-SPACE SEARCH ALGORITHM

In [7] it was demonstrated that the BSTAP can be
represented by a tree. This tree not only spans the decision
space of the BSTAP, but it also incorporates the state of the
problem in its nodes. The tree is constructed by generating
nodes that represent the assignment of a vehicle ¢ € V to
atask k € M on a target j € T at a specific time. The
child nodes are found by enumerating all of the possible
assignments that can be made, based on the remaining tasks
and requirements of the BSTAP. Nodes are constructed until
all of the combinations of vehicles, targets, and tasks, that
represent feasible assignments, have been found.

The choice of a search algorithm can greatly effect the
rate at which feasible assignments are improved. To search
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Fig. 1. Mean nodes required to compute optimal assignment.

trees the choices are essentially, breadth-first, depth-first,
and heuristic searches. Since the depth of the tree is very
shallow compared to its width, a depth first search will
generate feasible assignments quickly. Heuristic searches
can also take advantage of the depth of the tree while
also including known and predicted information into the
conduct of the search. One such heuristic algorithm that
is simple to implement is the state space best-first search
(SSBFS) algorithm. With the SSBFS algorithm, the costs of
the children nodes are calculated and the lowest cost (best)
child node is expanded. This algorithm causes more nodes
to be calculated than a depth-first search, but tends to arrive
at better solutions earlier. Since the search is dynamic, only
those nodes investigated need to be instantiated. This means
that large portions of the tree can be trimmed based on
previously discovered lower cost assignments. As shown in
Figure 1, as the total number of nodes in the space increases,
the ratio of nodes investigated to total nodes decreases. This
makes it possible to find optimal assignments for larger
dimensional problems than is possible with an exhaustive
search of the nodes. Finding an optimal assignment takes
less nodes than guaranteeing that the optimal assignment
has been found. That is, after the optimal assignment is
found, all of the uninvestigated nodes must be investigated
or pruned. The difference between finding the optimal
solution and guaranteeing that it is the optimal is shown
in Figure 2 for the test scenarios.
The depth of the tree, i.e. the number of nodes from the
root node to the leaf nodes is
D = N¢Np, (&)
where N,, is the number of tasks that need be performed
on each target (in the investigated problem N,, = 3).
Traversing the tree from a root node to a leaf node produces
a feasible assignment for UAVs to tasks. This makes it

107" I I I I I I
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Fig. 2. Mean difference between number of nodes required to guarantee
optimal and those required to find optimal assignments.
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Fig. 3. Node processing rate statistics.

possible to find feasible assignments in a known time

t=D/n (6)

where n is the node processing rate. Figure 3 shows
the mean of a node processing rate m as a function of
the number of total nodes processed. Note that although
this quantity is computer platform based (a Pentium IV-
2400Mhz in this case) the qualitative nature of this param-
eter is that it converges to a constant.

Once a feasible assignment is discovered, its cost J is
saved as a candidate optimal solution. As the search pro-
gresses more nodes of the tree are evaluated and compared
against the cost of the candidate optimal assignment. If the
new nodes are of lower cost than the optimal candidate so-
lution then they become the new optimal candidate solution.
If the cost is higher, then the node and all its children nodes
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are pruned. The search is terminated when all nodes have
been investigated or pruned.

IV. RESULTS

To test the SSBFS algorithm a number of different en-
gagements were constructed using the MultiUAV simulation
[10]. For each simulation run the vehicles started at the
same location and searched a given area with a given search
pattern. At the beginning of each simulation run the position
and heading of each target were selected using random
draws from a uniform distribution. The simulation was run
100 times. Each time the assignment algorithm was needed
during the simulation, a new engagement was declared. The
state of the vehicles and targets was saved for every engage-
ment. For the purpose of this test, all of the initial required
tasks for the targets were set to the initial task, i.e. classify,
which enabled all of the engagements to be compared with
each other. The SSBFS algorithm was then executed for
each engagement in the saved data. This produced sets of
feasible assignments, optimal assignments, nodes required
to guarantee optimal assignments and algorithm run time
(in seconds and number of nodes evaluated).

The run time plots of the solution quality for a 4 vehicles,
2 targets case and a 4 vehicles, 3 targets case are shown in
Figures 4 and 5, respectively. Note in these figures that the
run time is enumerated in nodes at the bottom and seconds
at the top of the plot. These plots represent individual
engagements, but they are representatives of the results from
the other engagements. As can be seen the initial solutions
are found as quickly as possible, after D nodes have been
processed; 6 nodes for the two targets case and 9 nodes
for the three targets case. Both of the initial solutions are
roughly twice the optimal solutions; both are monotonically
improving; and both converge to the the optimal assignment
solution. Each of the step improvements in the plots indicate
that a better feasible solution to the BSTAP was found.

Figure 6 shows trajectories for feasible and optimal
assignments for a 2 vehicles, 2 targets, and 3 tasks engage-
ment. The trajectories on the left are based on the feasible
solution found before 100 nodes were processed. The trajec-
tories on the right represent the optimal assignment. In this
figure, initial vehicle positions are marked with green disks
and target positions are marked with red squares. The num-
bers in the figure mark the position of way points and the
color-coded lines represent the trajectories assigned to each
vehicle. For the 100 node solution J = 73960m and the
optimal solution is J = 62468m, representing a factor of
1.2, or 11474m, decrease in total distance travelled. Tables
IT and III show the vehicle assignments for the respective
cases. The differences between the two assignments are that
the classify, attack, and verify assignments for each vehicle
have switched targets. Switching the targets made it possible
for the vehicles to fly shorter trajectories.

To analyze the quantitative performance of the SSBFS
algorithm a per vehicle capacity was assigned to each team

red Cl Al V2
green | C2 A2 VI

TABLE II
ASSIGNMENTS FOR THE 100 NODE ASSIGNMENT OF FIGURE 6
(C-CLASSIFY, A-ATTACK, V-VERIFY).

red C2 A2 VI
green | C1 Al V2

TABLE III
ASSIGNMENTS FOR THE OPTIMAL ASSIGNMENT OF FIGURE 6.

of UAVs making possible to calculate a team capacity
N,
Jr=) Ri )
i=1

where R; is the per vehicle capacity, e.g for this BSTAP it is
the total distance a vehicle ¢ € V' can perform assignments.
This variable is assumed to be known a priori based on the
assumption of constant speed flight and fuel consumption.
Using Egs. 4,7 we define the average capacity used by the
UAV group performing the assignment

C=E()/Ir ®)

Note that in this study the average was taken over all the
Monte Carlo simulation runs performed. Figure 7 shows a
plot of the amount of mission capability used by the team
(C) to perform the candidate assignment versus the number
of nodes processed. All engagements are with N, = 4,
N; = 3 and three tasks that have to be performed on each
target. The dashed lines represent the standard deviation.
This plot can be used to judge the amount of time it will
take to find an acceptable use of the UAV group capability
for a particular mission. That is, a plot of this sort can be
used to limit the processing time of the algorithm based on
the needs of the mission.

V. CONCLUSION

The representation of the UAV assignment problem as a
tree that need be searched allows incorporating all the states
of the problem. The proposed SSBFS algorithm, which is a
deterministic search method, has desirable qualities such as
providing fast initial feasible solutions that monotonically
improve and, eventually, converge to the optimal solution.
Since the nodes in the tree represent the physical and tem-
poral system, adding new constraints is relatively simple.
In this paper, the total distance travelled by the UAV team
members was minimized to produce the optimal assignment.
Other objectives such as minimum target prosecution time,
maximum target value and minimum per vehicle fuel usage,
could be implemented by changing the per node calcula-
tions.

The characteristics of the algorithm of providing a fast
feasible solution is of prime importance for very large
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Fig. 4. Solution quality for a 4 vehicles, 2 targets engagement.
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Fig. 5. Solution quality for a 4 vehicles, 3 targets engagement.
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Fig. 6. Assignment trajectories for a 2 vehicles, 2 targets engagement. Left figure is an assignment based on 100 nodes, and right figure

is optimal assignment.

dimensional problems. Another key attribute of the SSBFS
algorithm to the BSTAP is the ability to improve the
solution over time. This makes it possible to tailor the run-
time of the algorithm to the situation. For instance, if the
vehicles and targets are relatively close together then the
initial solutions can be used, but if the targets are farther
away, more nodes can be processed and a high quality
assignment solution can be achieved.

A drawback of the SSBFS algorithm is that there are
no guarantees on the rate of convergence to the optimal
solution. Especially for large dimensional problems this
process can take a significant amount of time. Thus, for

this algorithm to be implementable in a real system, im-
provements are required in the convergence process. In this
direction two approaches can be taken: finding a faster
search method and exploring receding horizon techniques.
For example, more powerful stochastic search techniques,
such as genetic algorithms, that implicitly use the gradients
in the problem and do not converge to local minima
may prove beneficial. Utilizing receding horizon techniques
would make it possible to reduce the node space that needs
to be searched, thus speeding up the convergence process.
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